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Electroreduction of triphenylphosphine dichloride in acetonitrile was performed successfully in an undi-
vided cell fitted with an aluminium sacrificial anode and a platinum cathode. Further, the one-pot trans-
formation of triphenylphosphine oxide to triphenylphosphine was achieved successfully by the
treatment of triphenylphosphine oxide in acetonitrile with oxalyl chloride and subsequent electrochem-
ical reduction.

� 2009 Elsevier Ltd. All rights reserved.
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In modern organic synthesis, triphenylphosphine 1 is an impor-
tant reagent for various reactions, for example, Wittig reaction,1

Mitsunobu reaction2 and Appel reaction.3 In these reactions, 1 is
converted to triphenylphosphine oxide 2, which is a stable and
flame-resistant chemical; as a result, a significant amount of 2
tends to be stored as troublesome waste. Facile methods involving
reduction of 2 to 1 have been in great demand from the viewpoints
of treatment of the troublesome waste and the use of recycled
phosphine resources (Scheme 1). Indeed, many procedures for
the reduction of 2 to 1 have been reported thus far. Reduction of
2 with silyl hydrides (e.g., trichlorosilane,4 triethoxysilane/tita-
nium tetra-iso-propoxide,5 and phenylsilane6) and aluminium hy-
drides (e.g., lithium aluminium hydride,7 lithium aluminium
hydride/cerium chloride,8 alane,9 sodium aluminium hydride/so-
dium aluminium tetrachloride10 and di-iso-butylaluminium hy-
dride11) provides the desired product 1 with good to excellent
yields (Scheme 1, Path A). Hexachlorodisilane,12 samarium io-
dide/hexamethylphosphoric triamide13 and titanocene dichloride/
magnesium14 have also been used for the reduction of 2. However,
the procedures reported thus far are not practical since they al-
ways require stoichiometric amounts of reducing agents that are
expensive and/or difficult to handle.

As an alternative procedure, chlorination of 2 to form triphenyl-
phosphine dichloride 315 followed by the reduction of 3 to 1 has
been intensively investigated (Scheme 1, Path B). Reduction of 3
to 1 was performed by hydrogenation under high temperature
and/or high pressure in the presence of transition metal catalysts
(Pt, Rh, and Pd).16,17 Reduction of 3 with several metals such as so-
dium,18 aluminium,19 silicon20 and iron21 has also been reported.
However, the reported procedures are not necessarily satisfactory
in terms of operational simplicity and/or economic efficiency.
ll rights reserved.
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Electrochemical reduction, which does not require any reduc-
tant and can be carried out under mild conditions, is a highly
promising procedure.22 Indeed, electroreduction of 2 provides re-
agents-free, cheap, environmentally benign and straightforward
access to 1. Although there have been a few reports on the electro-
reduction of 2, the reductive cleavage of the P–C bond mainly oc-
curred to produce a complex mixture of diphenylphosphine
oxide, phenylphosphine, benzene, 1,3-cyclohexadiene, etc.23 How-
ever, the bond dissociation energy of the P–Cl bond (H2P–Cl,
315.1 kJ/mol) is less than that of the P–O bond (H2P–OH,
359.7 kJ/mol),24 suggesting that upon electrochemical reduction,
the P–Cl bond is cleaved more easily than the P–O bond to afford
1 efficiently.

In this Letter, we report the electroreduction of 3 as well as the
‘one-pot’ conversion of 2 to 1 through the chlorination of 2 to 3 and
subsequent electrochemical reduction of 3 to yield 1.

Electroreduction of triphenylphosphine dihalides 3, 4 and 5 was
carried out in a divided cell fitted with two Pt plate electrodes
(1.5 � 1.0 cm2 each). A typical procedure is as follows. A solution
of 3 (0.5 mmol) in acetonitrile (10 mL)25 containing tetrabutylam-
3

Scheme 1. System for recycling of triphenylphosphine 1 from triphenylphosphine
oxide 2.
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Figure 1. 31P NMR spectra of Ph3PCl2/AlCl3.
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Scheme 3. Electroreduction of Ph3PCl2 in the presence of AlCl3.
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Figure 2. Sacrificial anode: a source of Lewis acid.
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monium tetrafluoroborate (0.05 M) and an acetonitrile (10 mL)
solution of tetrabutylammonium tetrafluoroborate (0.05 M) were
placed in the cathode and the anode chambers, respectively, and
a constant current (50 mA) was supplied. After passage of 2 F/
mol of electricity, the reaction mixture was poured into a mixture
of ice and 5% hydrochloric acid (5 mL), and extracted with ethyl
acetate (10 mL � 3). The combined extracts were washed with
brine, dried (Na2SO4), and concentrated under reduced pressure.
The residue was chromatographed (silica gel, hexane/ethyl ace-
tate = 3/1) to afford triphenylphosphine 1 (0.01 mmol, 2%) and 2
(0.49 mmol, 98%) which would be derived from the hydrolysis of
3 during electrolysis and/or work-up process (Table 1, entry 1).
On the other hand, the electroreduction of triphenylphosphine
dibromide 4 and diiodide 5 was carried out in a similar manner
to provide 1 with a yield of 38% and 40%, respectively (entries 2
and 3). In all cases, no other by-products were detected.

The significant difference between the product yield in the elec-
troreduction of 3 and the corresponding yields in the electroreduc-
tion of 4 and 5 can be explained as follows: Triphenylphosphine
dihalides exist in five-coordinate and four-coordinate forms
(Scheme 2). A 31P NMR study of triphenylphosphine dihalides re-
vealed that 5 ionizes completely to form iodotriphenylphosphoni-
um iodide in a polar organic solvent, while 3 partially ionizes to
form an equilibrium mixture of 3 and chlorotriphenylphosphoni-
um chloride.26

In this regard, Godfrey and co-workers reported the X-ray crys-
tal structure of triphenylphosphine dihalides.27 4 and 5 are ionic
four-coordinate phosphonium salts, and 3 is a five-coordinate
phosphorus compound, which has a trigonal bipyramidal struc-
ture. The electron density of the central phosphorus atom is lower
in the four-coordinate ionic structure than that in the five-coordi-
nate structure. Therefore, it is reasonable to assume that the ionic
forms of 5 and probably 4 are reduced more easily than the non-io-
nic form of 3.

We assumed that the addition of a Lewis acid would facilitate the
ionization of 3 to form an ionic four-coordinate phosphonium salt.
Indeed, as shown in the 31P NMR spectrum of 3, a low-field shift
was observed by the addition of aluminium chloride to the solution
of 3 in acetonitrile (Fig. 1). Without aluminium chloride, 3 showed a
single peak at 50.1 ppm downfield from the phosphoric acid external
standard. The peak shifted to 58.2 and 64.6 ppm when 0.5 and 1
equivalents of aluminium chloride were added, respectively, and
further addition of aluminium chloride did not result in a more
appreciable low-field shift. These results suggest that the electron
density on the central phosphorus atom of 3 decreased significantly
because of the formation of a 1-to-1 four-coordinate complex such
as [Ph3PCl]+[AlCl4]� 6, which is expected to be reduced more easily
than the five-coordinate form of 3 (Scheme 3).

The above-mentioned observation prompted us to investigate
the electroreduction of 3 in the presence of aluminium chloride
(Scheme 3). A mixture of 3 and aluminium chloride (1 mol equiv)
in acetonitrile containing tetrabutylammonium tetrafluoroborate
(0.05 M) was placed in the cathode compartment of a divided cell
and a constant current (50 mA, 2 F/mol) was supplied. As expected,
the yield of 1 significantly increased up to 37%.
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Scheme 2. Dissociation equilibrium of triphenylphosphine dihalide.
As aluminium chloride was generated during in situ electrolysis
from the aluminium sacrificial anode, we next examined the elec-
troreduction of 3 to 1 in an undivided cell without the addition of
aluminium chloride (Fig. 2).

In fact, the electroreduction of 3 in an undivided cell fitted with
a sacrificial anode was more efficiently and conveniently per-
formed. The electrolysis was carried out in a beaker-type undi-
vided cell fitted with an aluminium plate anode (1.5 � 1.0 cm2)
and a platinum plate cathode (1.5 � 1.0 cm2). A solution of 3
(0.5 mmol) in acetonitrile (10 mL) containing tetrabutylammo-
nium tetrafluoroborate (0.05 M) was placed in an undivided cell,
and a constant current (50 mA) was supplied. After the passage
of 2 F/mol of electricity and work-up procedure, 1 was obtained
with a 34% yield and 2 with a 46% yield (Table 2, entry 1).

When 3 F/mol of electricity was passed, the yield of 1 increased
to 46% (entry 2). Notably, when electrolysis was carried out by a
similar procedure using a magnesium rod or a zinc plate
(1.5 � 1.0 cm2) as a sacrificial anode, the yields of 1 decreased to
7–10% (entries 3 and 4). The Mg2+ and Zn2+ salts, generated
in situ from the sacrificial anodes, were rather weak Lewis acids
and did not efficiently form the four-coordinate phosphonium salts
([Ph3PCl]+[MgCl3]� and [Ph3PCl]+[ZnCl3]�). In a similar manner, the
electroreduction of 4 and 5 proceeded smoothly to provide 1 with a
yield of 45% and 61%, respectively.



Table 3
Effect of concentration of 3 and electrolytea

Entry 3 Electrolyte Yield of 1 b (%) Recovery of 2b (%)

(mmol) (M)

1 0.5 0.05 Bu4NBF4 46 33

2 5.0 1.00 Bu4NBF4 68 11
3 5.0 1.00 Bu4NOTf 68 7
4 5.0 1.00 Bu4NBr 62 16

a Pt: 1.5 � 1.0 cm2, 33.3 mA/cm2.
b Yields of the isolated compounds.

Table 4
One-pot conversion of Ph3PO 2 to Ph3P 1

Electrolyte (0.10 M)
(Al)-(Pt)

Undivided Cell
50 mA, 3 F/mol

1(5.0 mmol)
2

(COCl)2 (5.0 mmol)
     MeCN (5 mL)

3

P

Ph

Ph

Ph

Cl

Cl

Entry Electrolyte Yield of 1a (%) Recovery of 2a (%)

1 Bu4NOTf 74 6

2 AlCl3 74 12
3 AlBr3 84 (72)b 12 (8)b

4 None 73 14
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The yield of 1 was significantly improved by the increase in the
concentration of 3 (Table 3, entry 2). When the concentration of 3
increased to 1 M (a 20-fold increase over that in previous entries in
Tables 1 and 2), 1 was obtained with a yield of 68%. The effect of
the supporting electrolyte was not significant. Tetrabutylammo-
nium triflate and bromide could be used without appreciable
change in the yield of the product (entries 3 and 4).

Finally, we examined the one-pot conversion of 2 to 1 through
the chlorination of 2 with oxalyl chloride and the subsequent elec-
trochemical reduction. A typical procedure is as follows. To a solu-
tion of 2 (5.0 mmol) and tetrabutylammonium triflate (200 mg,
0.5 mmol) in acetonitrile (5 mL) was added oxalyl chloride
(0.43 mL, 1 equiv) at room temperature, and the mixture was stir-
red for a few minutes. An aluminium anode and a platinum cath-
ode were immersed in the mixture, and a constant current
(50 mA) was supplied. After the passage of 3 F/mol of electricity
and usual work-up, triphenylphosphine 1 (3.7 mmol, 74%) and 2
(0.3 mmol, 6%) were obtained, respectively (Table 4, entry 1). In
place of tetrabutylammonium triflate, aluminium chloride and
bromide were used efficiently as a supporting electrolyte to pro-
duce 1 with a yield of 74% and 84%, respectively (entries 2 and
3). It is interesting to note that even without the addition of the
supporting electrolytes, electroreduction proceeded smoothly to
give 1 with an overall yield of 73% (entry 4).

It is likely that in the initial stage of electrolysis, chloride con-
taminants, for example, hydrogen chloride and aluminium chlo-
Table 1
Electroreduction of triphenylphosphine dihalides 3–5 to triphenylphosphine 1 in a
divided cella

Ph P Ph P O
(Pt)-(Pt), Divided Cell

50 mA, 2 F/mol
room temp.

Bu4NBF4 (0.05 M)
MeCN (10 mL)

(0.5 mmol)

1 2

+

X = Cl : 3
= Br : 4

    =  I  : 5

Ph3PX2

Ph

Ph

Ph

Ph

Entry Ph3PX2 Yield of 1b (%) Recovery of 2b (%)

x

1 3 Cl 2 98
2 4 Br 38 62
3 5 I 40 60

a Pt: 1.5 � 1.0 cm2, 33 mA/cm2.
b Determined by GC.

Table 2
Electroreduction of triphenylphosphine dihalides in an undivided cella

Bu4NBF4 (0.05 M)
MeCN (10 mL)

(Anode)-(Pt)
Undivided Cell
50 mA, X F/mol 1(0.5 mmol) 2

PPh

Ph

Ph

X

X

PPh

Ph

Ph

PPh

Ph

Ph

O+

Entry Ph3PX2 Anode F/mol Yield of 1b (%) Recovery of 2b (%)

X

1 3 Cl Al 2 34 46
2 3 Cl Al 3 46 33
3 3 Cl Mg 2 7 55
4 3 Cl Zn 2 10 88

5 4 Br Al 2 45 39

6 5 I Al 2 61 20

a Pt: 1.5 � 1.0 cm2, 33.3 mA/cm2.
b Yields of the isolated compounds.

a Determined by GC.
b Yields of the isolated compounds.
ride, derived from oxalyl chloride and/or a small amount of the
ionic form of 3, acted as a supporting electrolyte, and aluminium
salts generated in situ from the sacrificial anode then worked as
the supporting electrolyte. These results demonstrate the feasibil-
ity of the one-pot procedure for the conversion of 1 to 2; thereby,
offering a practical recycling system for 1.

In conclusion, the electrochemical reduction of 3 was per-
formed efficiently in an undivided cell fitted with an aluminium
sacrificial anode and a platinum cathode, wherein aluminium chlo-
ride generated in situ from the sacrificial anode reacted with 3 and
the thus formed four-coordinate ionic species ([Ph3PCl]+[AlCl4]�)
underwent two-electron reduction at the cathode to provide 1 in
moderate yields. The one-pot conversion of 2 to 1 through 3 was
achieved successfully by the treatment of 2 with oxalyl chloride
in acetonitrile and the subsequent electrochemical reduction of
the mixture with an aluminium anode and a platinum cathode.
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